论文标题

六个vertex模型的Ising型公式

An Ising-type formulation of the six-vertex model

论文作者

Bazhanov, Vladimir V., Sergeev, Sergey M.

论文摘要

我们表明,著名的六个vertex统计力学模型(及其多态概括)可以作为ISING类型模型重新构建,并具有两旋旋转相互作用。这种重新制定揭示了行对行传输矩阵的显着分解特性,从而使其特征值均匀地得出了所有功能关系,并为特征向向量的坐标为六个vertex模型的所有较高的自旋概括提供了坐标。这些模型的Ising型公式的可能性提出了有关顶点模型传统量子组描述的优先级的问题。实际上,主要的可集成性条件的作用现在是由星形三角关系扮演的,在标准量子组设置中并不完全自然,但意味着顶点型Yang-baxter方程和传递矩阵的通勤性作为简单的成果。作为数学身份,新兴的星形三角关系等同于Pfaff-saalschuetz-Jackson的总结公式,最初由J.〜f.〜pfaff在1797年发现。可能,所有顶点都与量化的杂物模型相关联,与量化的载体和超级ggebras和Superalgebras相关联,仅适用于两种型号的模型。

We show that the celebrated six-vertex model of statistical mechanics (along with its multistate generalizations) can be reformulated as an Ising-type model with only a two-spin interaction. Such a reformulation unravels remarkable factorization properties for row to row transfer matrices, allowing one to uniformly derive all functional relations for their eigenvalues and present the coordinate Bethe ansatz for the eigenvectors for all higher spin generalizations of the six-vertex model. The possibility of the Ising-type formulation of these models raises questions about the precedence of the traditional quantum group description of the vertex models. Indeed, the role of a primary integrability condition is now played by the star-triangle relation, which is not entirely natural in the standard quantum group setting, but implies the vertex-type Yang-Baxter equation and commutativity of transfer matrices as simple corollaries. As a mathematical identity the emerging star-triangle relation is equivalent to the Pfaff-Saalschuetz-Jackson summation formula, originally discovered by J.~F.~Pfaff in 1797. Plausibly, all vertex models associated with quantized affine Lie algebras and superalgebras can be reformulated as Ising-type models with only two-spin interactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源