论文标题
通过DOA阈值区域近似的基于开关的MIMO阵列中的天线选择
Antenna Selection in Switch-Based MIMO Arrays via DOA threshold region Approximation
论文作者
论文摘要
到达方向(DOA)信息对于完成本地化和波束成形任务的多输入 - 元素输出(MIMO)系统至关重要。切换天线阵列最近成为降低MIMO系统成本和功耗的有效解决方案。基于开关的阵列体系结构将有限数量的射频链连接到形成子阵列的天线元件的子集。本文解决了天线选择的问题,以优化DOA估计性能。我们首先执行一个子阵列布局对齐过程,以删除具有相同BeamPatterns的子阵列,并创建一个唯一的子阵列集。通过使用此集合,并基于DOA阈值区域性能近似,我们提出了两种天线选择算法。一种贪婪的算法和深度学习算法。提出的算法的性能通过数值评估。结果表明,就阈值区域和计算复杂性的DOA估计而言,对选定基准方法的性能有了显着改善。
Direction-of-arrival (DOA) information is vital for multiple-input-multiple-output (MIMO) systems to complete localization and beamforming tasks. Switched antenna arrays have recently emerged as an effective solution to reduce the cost and power consumption of MIMO systems. Switch-based array architectures connect a limited number of radio frequency chains to a subset of the antenna elements forming a subarray. This paper addresses the problem of antenna selection to optimize DOA estimation performance. We first perform a subarray layout alignment process to remove subarrays with identical beampatterns and create a unique subarray set. By using this set, and based on a DOA threshold region performance approximation, we propose two antenna selection algorithms; a greedy algorithm and a deep-learning-based algorithm. The performance of the proposed algorithms is evaluated numerically. The results show a significant performance improvement over selected benchmark approaches in terms of DOA estimation in the threshold region and computational complexity.