论文标题

柔软的标量和天体CFT空间的几何形状

Soft Scalars and the Geometry of the Space of Celestial CFTs

论文作者

Kapec, Daniel, Law, Y. T. Albert, Narayanan, Sruthi A.

论文摘要

在渐近抗DE的空间中,全息词典的已知示例将散装真空吸尘器的模数空间与双量子场理论中的共形歧管等同。我们证明,同样的鉴定在任何维度的渐近空间中都具有重力,这与从天体保形场理论(CCFT)形式上得出的期望相符。 Sigma模型所描述的模量标量的软限制是通用的,并且与$ S $ -Matrix可观测值的平行传输相关。领先的“软模量操作员”是尺寸$δ= D $边际操作员$ m(x)$的阴影变换。软限制的通用形式确保$ m(x)$在CCFT $ _D $中充当边缘变形,软标量的连贯状态对应于沿形状歧管的有限变形。该歧管通常具有曲率,该曲率由反对称双柔性定理捕获,它反映了CCFT $ _D $中的浆果曲率。我们还计算了Sigma模型中的Mellin转换的四点函数,并与Kutasov的公式相比,用于保形歧管的曲率。

Known examples of the holographic dictionary in asymptotically Anti-de Sitter spacetimes equate moduli spaces of bulk vacua with conformal manifolds in the dual quantum field theory. We demonstrate that the same identification holds for gravity in asymptotically flat spacetimes in any dimension, in accord with expectations derived from the celestial conformal field theory (CCFT) formalism. Soft limits of moduli scalars described by the sigma model are universal, and relate to parallel transport of $S$-matrix observables over the moduli space of bulk vacua. The leading "soft moduli operator" is the shadow transform of a dimension $Δ=d$ marginal operator $M(x)$. The universal form of the soft limit guarantees that $M(x)$ acts as a marginal deformation in the CCFT$_d$, and coherent states of the soft scalars correspond to finite deformations along the conformal manifold. This manifold typically has curvature, which is captured by the antisymmetric double-soft theorem and which reflects the Berry curvature in CCFT$_d$. We also compute the Mellin-transformed four-point function in the sigma model and compare to a formula of Kutasov for the curvature of the conformal manifold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源