论文标题
朝向智能复合材料:软尺度,不束缚的预测和控制软传感器/执行器系统
Toward smart composites: small-scale, untethered prediction and control for soft sensor/actuator systems
论文作者
论文摘要
我们提供了公式和开源工具,以使用学识渊博的前动力学和设备计算来实现传感器/执行器系统的内部模型预测控制。微控制器单元(MCUS)在与传感器和执行器共结合时计算预测和控制任务的微控制器单元(MCUS)可以实现内部不受束缚的行为。在这种方法中,小型参数大小神经网络模型离线学习前向运动学。我们的开源编译器NN4MC生成代码以将这些预测卸载到MCUS上。然后,牛顿 - 拉夫森求解器实时计算控件输入。我们首先基准在质量弹簧抑制剂模拟上针对PID控制器的这种非线性控制方法。然后,我们在两个具有不同传感,驱动和计算硬件的实验钻机上研究实验结果:一个基于胶片的平台,具有嵌入式灯具传感器和带有磁性传感器的基于HASEL的平台。实验结果表明,具有较小的内存足迹(小于闪存的6.4%)的参考路径(大于或等于120 Hz)的有效高带宽跟踪。在基于肌腱的平台中,测得的误差之后路径不超过2mm。在基于HASEL的平台中,模拟路径以下误差不超过1mm。该方法在ARM Cortex-M4F设备中的平均功耗为45.4兆瓦。这种控制方法还与Tensorflow Lite模型和等效的在设备代码兼容。内物质智能使一类新的复合材料将自主权注入具有精致人工本体感受的结构和系统。
We present formulation and open-source tools to achieve in-material model predictive control of sensor/actuator systems using learned forward kinematics and on-device computation. Microcontroller units (MCUs) that compute the prediction and control task while colocated with the sensors and actuators enable in-material untethered behaviors. In this approach, small parameter size neural network models learn forward kinematics offline. Our open-source compiler, nn4mc, generates code to offload these predictions onto MCUs. A Newton-Raphson solver then computes the control input in real time. We first benchmark this nonlinear control approach against a PID controller on a mass-spring-damper simulation. We then study experimental results on two experimental rigs with different sensing, actuation and computational hardware: a tendon-based platform with embedded LightLace sensors and a HASEL-based platform with magnetic sensors. Experimental results indicate effective high-bandwidth tracking of reference paths (greater than or equal to 120 Hz) with a small memory footprint (less than or equal to 6.4% of flash memory). The measured path following error does not exceed 2mm in the tendon-based platform. The simulated path following error does not exceed 1mm in the HASEL-based platform. The mean power consumption of this approach in an ARM Cortex-M4f device is 45.4 mW. This control approach is also compatible with Tensorflow Lite models and equivalent on-device code. In-material intelligence enables a new class of composites that infuse autonomy into structures and systems with refined artificial proprioception.