论文标题

图像分割的显着驱动的主动轮廓模型

Saliency-Driven Active Contour Model for Image Segmentation

论文作者

Iqbal, Ehtesham, Niaz, Asim, Memon, Asif Aziz, Asim, Usman, Choi, Kwang Nam

论文摘要

主动轮廓模型在图像分割领域取得了显着的成功,从而使复杂的对象可以从背景中进行分割以进行进一步分析。现有模型可以分为基于区域的活动轮廓模型和基于边缘的活动轮廓模型。但是,两种模型都使用直接图像数据来实现分割,并在初始轮廓位置,噪声敏感性,局部最小值和效率低下的情况下面临许多具有挑战性的问题,这是由于图像强度的内均匀性。图像的显着图会改变图像表示形式,使其更具视觉和有意义。在这项研究中,我们提出了一个新型模型,该模型将显着图的优势与局部图像信息(LIF)(LIF)相吻合,并克服了以前模型的缺点。所提出的模型由图像的显着图和本地图像信息驱动,以增强主动轮廓模型的进度。在此模型中,首先计算出图像的显着性图以找到显着性驱动的局部拟合能。然后,将显着驱动的局部拟合能与LIF模型相结合,从而产生了最终的新型能量功能。通过级别集合制定了最终的能量功能,并添加调节项以更精确地在对象边界上进化轮廓。在不同的合成图像,真实图像和公开可用的数据集(包括医疗图像)上验证了所提出的方法的质量。与其他分割模型相比,图像分割结果和定量比较证实了所提出模型的轮廓初始化独立性,噪声不敏感性和优异的分割精度。

Active contour models have achieved prominent success in the area of image segmentation, allowing complex objects to be segmented from the background for further analysis. Existing models can be divided into region-based active contour models and edge-based active contour models. However, both models use direct image data to achieve segmentation and face many challenging problems in terms of the initial contour position, noise sensitivity, local minima and inefficiency owing to the in-homogeneity of image intensities. The saliency map of an image changes the image representation, making it more visual and meaningful. In this study, we propose a novel model that uses the advantages of a saliency map with local image information (LIF) and overcomes the drawbacks of previous models. The proposed model is driven by a saliency map of an image and the local image information to enhance the progress of the active contour models. In this model, the saliency map of an image is first computed to find the saliency driven local fitting energy. Then, the saliency-driven local fitting energy is combined with the LIF model, resulting in a final novel energy functional. This final energy functional is formulated through a level set formulation, and regulation terms are added to evolve the contour more precisely across the object boundaries. The quality of the proposed method was verified on different synthetic images, real images and publicly available datasets, including medical images. The image segmentation results, and quantitative comparisons confirmed the contour initialization independence, noise insensitivity, and superior segmentation accuracy of the proposed model in comparison to the other segmentation models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源