论文标题

使用非参数过滤张量分解来解耦多元函数

Decoupling multivariate functions using a nonparametric filtered tensor decomposition

论文作者

Decuyper, Jan, Tiels, Koen, Weiland, Siep, Runacres, Mark C., Schoukens, Johan

论文摘要

多元功能自然出现在各种数据驱动模型中。流行的选择是基础扩展或神经网络的形式的表达式。尽管高效,但最终的功能往往很难解释,部分原因是所需的参数数量大量。解耦技术旨在提供非线性的替代表示。所谓的解耦形式通常是对关系的更有效的参数化,同时是高度结构化的,有利于解释性。在这项工作中,引入了两种新算法,基于一阶导数信息的过滤张量分解。该方法返回平滑解耦函数的非参数估计。在I.A.中找到直接申请非线性系统识别和机器学习领域。

Multivariate functions emerge naturally in a wide variety of data-driven models. Popular choices are expressions in the form of basis expansions or neural networks. While highly effective, the resulting functions tend to be hard to interpret, in part because of the large number of required parameters. Decoupling techniques aim at providing an alternative representation of the nonlinearity. The so-called decoupled form is often a more efficient parameterisation of the relationship while being highly structured, favouring interpretability. In this work two new algorithms, based on filtered tensor decompositions of first order derivative information are introduced. The method returns nonparametric estimates of smooth decoupled functions. Direct applications are found in, i.a. the fields of nonlinear system identification and machine learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源