论文标题
夹层表面奇点的变形和最小模型程序
Deformations of sandwiched surface singularities and the minimal model program
论文作者
论文摘要
我们研究了三种理性表面奇点变形理论之间的对应关系:de jong和van Straten的图片变形,Kollár的P分辨率和Pinkham的负重平滑。我们提供了一种从一个理论中给定的变形中获得的明确方法,该方法是在其他理论中的变形,该理论将与奇异性变形空间相同的不可约合成分进行参数化。为此,我们大量采用了半稳定的最小模型程序。我们证明了Kollár的猜想,用于应用各种夹心表面奇点。
We investigate the correspondence between three theories of deformations of rational surface singularities: de Jong and van Straten's picture deformations, Kollár's P-resolutions, and Pinkham's smoothings of negative weights. We provide an explicit method for obtaining, from a given deformation in one theory, deformations in other theories that parameterize the same irreducible components of the deformation space of the singularity. We employ the semi-stable minimal model program significantly for this purpose. We prove Kollár conjecture for various sandwiched surface singularities as an application.