论文标题

及时调整判别性预训练的语言模型

Prompt Tuning for Discriminative Pre-trained Language Models

论文作者

Yao, Yuan, Dong, Bowen, Zhang, Ao, Zhang, Zhengyan, Xie, Ruobing, Liu, Zhiyuan, Lin, Leyu, Sun, Maosong, Wang, Jianyong

论文摘要

最近的作品显示了迅速调整自然语言处理(NLP)任务的迅速调整的有希望的结果。但是,据我们所知,现有的作品着重于迅速调整生成PLM,这些生成PLM经过预训练以生成目标令牌,例如Bert。仍然未知是否以及如何有效地调整伊利特拉(Electra)的歧视性PLM。在这项工作中,我们介绍了DPT,这是第一个歧视性PLM的及时调整框架,该框架将NLP任务重新制定为歧视性语言建模问题。关于文本分类和问题答案的全面实验表明,与香草微调相比,DPT的性能明显更高,并且还可以防止在全设定和低资产设置中调整大型PLM的不稳定问题。本文的源代码和实验详细信息可以从https://github.com/thunlp/dpt获得。

Recent works have shown promising results of prompt tuning in stimulating pre-trained language models (PLMs) for natural language processing (NLP) tasks. However, to the best of our knowledge, existing works focus on prompt-tuning generative PLMs that are pre-trained to generate target tokens, such as BERT. It is still unknown whether and how discriminative PLMs, e.g., ELECTRA, can be effectively prompt-tuned. In this work, we present DPT, the first prompt tuning framework for discriminative PLMs, which reformulates NLP tasks into a discriminative language modeling problem. Comprehensive experiments on text classification and question answering show that, compared with vanilla fine-tuning, DPT achieves significantly higher performance, and also prevents the unstable problem in tuning large PLMs in both full-set and low-resource settings. The source code and experiment details of this paper can be obtained from https://github.com/thunlp/DPT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源