论文标题
旋转网络纠缠:粗粒
Spin network entanglement: coarse-graining
论文作者
论文摘要
在循环量子重力中,分区图引入了自旋子网络之间的边界和纠缠,反映了空间区域之间的非本地自由度和相关性。这引起了粗粒的看法,从而降低了不需要考虑的自由度。目前的工作在宽敞的边界关系框架内进行了粗粒。我们研究了旋转网络纠缠,表明纠缠在运动层的粗粒度下是不变的。此外,我们在基于详细图和更粗糙的图表的自动算子之间构建了转换,并揭示了整体运算符生成的进化下的粗粒方法保存。这导致了循环量子重力的纠缠问题的全息视角。
In loop quantum gravity, partitioning graph introduces boundaries and entanglement between spin sub-networks, reflecting non-local degrees of freedom and correlation amongst spatial regions. This gives rise to the view of coarse-graining, reducing the degrees of freedom that are unnecessary to be considered. The present work sets coarse-graining in the framework of bulk-boundary relation. We investigates the spin network entanglement, showing that the entanglement is invariant under the coarse-graining at kinematical level. Moreover, we build the transformation between holonomy operators based on finer graph and coarser graph, and reveal the preservation of the coarse-graining method under the evolution generated by the holonomy operator. This leads to a holographical perspective for the entanglement issue in loop quantum gravity.