论文标题

WiFi网络中持续的弱干扰物检测:一种基于深度学习的方法

Persistent Weak Interferer Detection in WiFi Networks: A Deep Learning Based Approach

论文作者

Adams, Andrew, Obrecht, Richard F., Wilt, Miller, Adams, Andrew, Obrecht, Richard F., Wilt, Miller, Barcklow, Daniel, Blitz, Bennett, Chew, Daniel

论文摘要

在本文中,我们探讨了使用多种深度学习技术来检测WiFi网络中的弱干扰。鉴于涉及低干扰信号水平,这种情况往往很难检测到。但是,即使是超过20 dB的信噪比,也会导致明显的吞吐量降解和潜伏期。此外,最终的数据包错误率可能不足以迫使WiFi网络退回到更强大的物理层配置。直接应用于采样的射频数据的深度学习具有比连续的干扰取消更便宜的检测潜力,这对于实时持续网络监控非常重要。这项工作中探索的技术包括最大的软马克斯概率,距离度量学习,变异自动编码器和自动型对数可能性。我们还介绍了这些技术的普遍离群值的概念,并显示了其在检测弱干扰方面的重要性。我们的结果表明,通过离群值,最大的软率概率,距离度量学习和自动性对数可能性,能够可靠地检测出低于802.11指定的最小敏感性水平的20 dB的干扰。我们认为,这为实时,持续网络监视提供了独特的软件解决方案。

In this paper, we explore the use of multiple deep learning techniques to detect weak interference in WiFi networks. Given the low interference signal levels involved, this scenario tends to be difficult to detect. However, even signal-to-interference ratios exceeding 20 dB can cause significant throughput degradation and latency. Furthermore, the resultant packet error rate may not be enough to force the WiFi network to fallback to a more robust physical layer configuration. Deep learning applied directly to sampled radio frequency data has the potential to perform detection much cheaper than successive interference cancellation, which is important for real-time persistent network monitoring. The techniques explored in this work include maximum softmax probability, distance metric learning, variational autoencoder, and autoreggressive log-likelihood. We also introduce the notion of generalized outlier exposure for these techniques, and show its importance in detecting weak interference. Our results indicate that with outlier exposure, maximum softmax probability, distance metric learning, and autoreggresive log-likelihood are capable of reliably detecting interference more than 20 dB below the 802.11 specified minimum sensitivity levels. We believe this presents a unique software solution to real-time, persistent network monitoring.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源