论文标题

重新思考任务收入学习基线

Rethinking Task-Incremental Learning Baselines

论文作者

Hossain, Md Sazzad, Saha, Pritom, Chowdhury, Townim Faisal, Rahman, Shafin, Rahman, Fuad, Mohammed, Nabeel

论文摘要

通常,在现实世界应用程序中需要在系统中引入的新数据连续流。该模型需要在保留旧知识(过去的任务)时学习新添加的功能(未来任务)。渐进的学习最近对这个问题越来越有吸引力。任务收入学习是一种增量学习,在推理过程中,新纳入任务的任务身份(一组课程)仍然知道。任务收入方法的一个常见目标是设计一个可以以最小尺寸运行的网络,以保持不错的性能。为了管理稳定性困境,不同的方法利用了对过去任务,专业硬件,正规化监视等的重播记忆等。但是,这些方法在体系结构增长或输入数据成本方面的内存效率仍然较小。在这项研究中,我们为任务增量学习提供了一个简单而有效的调整网络(SAN),与以前的最先进的方法相比,使用最小的体系结构尺寸而无需使用记忆实例,可以实现近乎最先进的性能。我们在3D点云对象(ModelNet40)和2D图像(CIFAR10,CIFAR100,Miniimagenet,MniSt,MniSt,PermutedMnist,NotMnist,notmnist,SVHN和FashionMnist)上都研究了这种方法,并建立了与现有方法的公平比较。在2D和3D域中,我们还观察到SAN主要不受任务设置中不同任务订单的影响。

It is common to have continuous streams of new data that need to be introduced in the system in real-world applications. The model needs to learn newly added capabilities (future tasks) while retaining the old knowledge (past tasks). Incremental learning has recently become increasingly appealing for this problem. Task-incremental learning is a kind of incremental learning where task identity of newly included task (a set of classes) remains known during inference. A common goal of task-incremental methods is to design a network that can operate on minimal size, maintaining decent performance. To manage the stability-plasticity dilemma, different methods utilize replay memory of past tasks, specialized hardware, regularization monitoring etc. However, these methods are still less memory efficient in terms of architecture growth or input data costs. In this study, we present a simple yet effective adjustment network (SAN) for task incremental learning that achieves near state-of-the-art performance while using minimal architectural size without using memory instances compared to previous state-of-the-art approaches. We investigate this approach on both 3D point cloud object (ModelNet40) and 2D image (CIFAR10, CIFAR100, MiniImageNet, MNIST, PermutedMNIST, notMNIST, SVHN, and FashionMNIST) recognition tasks and establish a strong baseline result for a fair comparison with existing methods. On both 2D and 3D domains, we also observe that SAN is primarily unaffected by different task orders in a task-incremental setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源