论文标题
类似Boltzmann-Poisson的方法,用于模拟银河系对卫星积聚的响应依赖于光晕密度曲线
Boltzmann-Poisson-like approach to simulating the galactic halo response to satellite accretion Dependence on the halo density profile
论文作者
论文摘要
最近的研究报道了大麦芽云(LMC)触发的银河恒星光环唤醒和偶极子的检测,反映了暗物质(DM)的相应响应。这些研究开辟了可能增加对银河系(MW)的全球质量分布的可能性,甚至是DM本身的性质,以及当前和即将进行的出色调查,重新激发了有关动态摩擦中响应模式的讨论。但是,此类功能的模拟仍然在计算上具有挑战性。我们根据文献中现有的方法使用了无碰撞的玻尔兹曼方程(CBE)+泊松求解器。我们研究了积聚LMC尺寸卫星的银河系型DM光晕的模拟中的密度和速度响应模式,包括对光晕密度曲线的依赖。我们成功地捕获了宿主光晕引起的当地唤醒和全球过度和不足。我们还捕获了速度响应。与以前的研究一致,我们发现代码可以在cuspy轮廓和卫星核心失速中重现核心形成。角功率谱(AP)响应显示对每个密度曲线敏感。 Cored Plummer密度曲线似乎是最响应的,表现出丰富的模式。在模拟结束时,中央光环获得圆柱旋转。与传统的N体模拟相比,CBE描述使捕获响应模式可以捕获响应模式。因此,鉴于一定的噪声水平,BPM的计算成本低于N体模拟,因此可以探索大型参数集。我们预计,如果MW或外部星系中的恒星球体如果发生大规模积聚事件,则可能显示中央圆柱形旋转。可以调整该代码以包括各种DM物理。
Recent studies have reported the detection of the galactic stellar halo wake and dipole triggered by the Large Magellanic Cloud (LMC), mirroring the corresponding response from dark matter (DM). These studies open up the possibility of adding constraints on the global mass distribution of the Milky Way (MW), and even on the nature of DM itself, with current and upcoming stellar surveys reigniting the discussion on response modes in dynamical friction. However, the simulation of such features remains computationally challenging. We used a collisionless Boltzmann equation (CBE)+Poisson solver based on an existing method from the literature. We investigated the density and velocity response modes in simulations of Galactic-type DM halos accreting LMC-sized satellites, including the dependence on the halo density profile. We successfully captured both the local wake and the global over- and underdensity induced in the host halo. We also captured the velocity response. In line with previous studies, we find that the code can reproduce the core formation in the cuspy profile and the satellite core stalling. The angular power spectrum (APS) response is shown to be sensitive to each density profile. The cored Plummer density profile seems the most responsive, displaying a richness of modes. At the end of the simulation, the central halo acquires cylindrical rotation. The CBE description makes it tenable to capture the response modes with a better handling of noise in comparison to traditional N-body simulations. Hence, given a certain noise level, BPM has a lower computational cost than N-body simulations, making it feasible to explore large parameter sets. We anticipate that stellar spheroids in the MW or external galaxies could show central cylindrical rotation if they underwent a massive accretion event. The code can be adjusted to include a variety of DM physics.