论文标题
用于医疗保健和精确医学的因果机器学习
Causal Machine Learning for Healthcare and Precision Medicine
论文作者
论文摘要
因果机器学习(CML)在医疗保健中的普及越来越高。除了将领域知识添加到学习系统中的固有功能外,CML还提供了一个完整的工具集,用于研究系统对干预的反应(例如,给定治疗的结果)。量化干预措施的效果允许在存在混杂因素的情况下保持稳健性的同时做出可行的决策。在这里,我们探讨了如何通过使用机器学习的最新进展将因果推断纳入临床决策支持(CDS)系统的不同方面。在整个本文中,我们使用阿尔茨海默氏病(AD)创建示例,以说明在临床情况下CML如何有利。此外,我们讨论了医疗保健应用中存在的重要挑战,例如处理高维和非结构化数据,对分布样本的概括以及时间关系,尽管研究界的努力仍然有待解决。最后,我们回顾了因果代表学习,因果发现和因果推理中的研究渠道,这些研究为应对上述挑战提供了潜力。
Causal machine learning (CML) has experienced increasing popularity in healthcare. Beyond the inherent capabilities of adding domain knowledge into learning systems, CML provides a complete toolset for investigating how a system would react to an intervention (e.g.\ outcome given a treatment). Quantifying effects of interventions allows actionable decisions to be made whilst maintaining robustness in the presence of confounders. Here, we explore how causal inference can be incorporated into different aspects of clinical decision support (CDS) systems by using recent advances in machine learning. Throughout this paper, we use Alzheimer's disease (AD) to create examples for illustrating how CML can be advantageous in clinical scenarios. Furthermore, we discuss important challenges present in healthcare applications such as processing high-dimensional and unstructured data, generalisation to out-of-distribution samples, and temporal relationships, that despite the great effort from the research community remain to be solved. Finally, we review lines of research within causal representation learning, causal discovery and causal reasoning which offer the potential towards addressing the aforementioned challenges.