论文标题

对比和非对比度的自我监督学习恢复全球和局部光谱嵌入方法

Contrastive and Non-Contrastive Self-Supervised Learning Recover Global and Local Spectral Embedding Methods

论文作者

Balestriero, Randall, LeCun, Yann

论文摘要

自我监督的学习(SSL)推测,投入和成对的积极关系足以学习有意义的表示。尽管SSL最近达到了一个里程碑:在许多方式中,胜过监督的方法\点,理论基础是有限的,特定于方法的,并且无法为从业者提供原则上的设计指南。在本文中,我们提出了一个统一的框架,这些框架是在光谱歧管学习的掌舵下,以解决这些局限性。通过这项研究的过程,我们将严格证明Vic​​reg,Simclr,Barlowtwins等。对应于诸如Laplacian eigenmap的同名光谱方法,多维缩放等。 然后,这种统一将使我们能够获得(i)每种方法的封闭形式的最佳表示,(ii)每种方法的线性状态中的封闭形式的最佳网络参数,(iii)培训期间对每个数量和下游任务表现的成对关系的影响,以及下游任务表演,以及最重要的范围(iv),(iv)在范围内和非范围的范围,对相反方法和局部范围之间的范围和范围之间的范围划分,对相反方法和范围进行了范围,对相反方法既可以依靠范围,则在对比方法和范围内范围内的范围,范围是范围的方法,并在相反的方法之间依靠范围。暗示每个的好处和局限性。例如,(i)如果成对关系与下游任务一致,则可以成功采用任何SSL方法并将恢复监督方法,但是在低数据制度中,VICREG的不变性超参数应该很高; (ii)如果成对关系与下游任务未对准,则与Simclr或Barlowtwins相比,具有小型不变性参数的VICREG应优选。

Self-Supervised Learning (SSL) surmises that inputs and pairwise positive relationships are enough to learn meaningful representations. Although SSL has recently reached a milestone: outperforming supervised methods in many modalities\dots the theoretical foundations are limited, method-specific, and fail to provide principled design guidelines to practitioners. In this paper, we propose a unifying framework under the helm of spectral manifold learning to address those limitations. Through the course of this study, we will rigorously demonstrate that VICReg, SimCLR, BarlowTwins et al. correspond to eponymous spectral methods such as Laplacian Eigenmaps, Multidimensional Scaling et al. This unification will then allow us to obtain (i) the closed-form optimal representation for each method, (ii) the closed-form optimal network parameters in the linear regime for each method, (iii) the impact of the pairwise relations used during training on each of those quantities and on downstream task performances, and most importantly, (iv) the first theoretical bridge between contrastive and non-contrastive methods towards global and local spectral embedding methods respectively, hinting at the benefits and limitations of each. For example, (i) if the pairwise relation is aligned with the downstream task, any SSL method can be employed successfully and will recover the supervised method, but in the low data regime, VICReg's invariance hyper-parameter should be high; (ii) if the pairwise relation is misaligned with the downstream task, VICReg with small invariance hyper-parameter should be preferred over SimCLR or BarlowTwins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源