论文标题
通过卷积神经网络形成磁反孔
Identifying magnetic antiskyrmions while they form with convolutional neural networks
论文作者
论文摘要
近年来,手性磁铁吸引了大量的研究兴趣,因为它们支持了各种拓扑缺陷,例如天空和bimerons,并通过多种技术允许其观察和操纵。它们在SpinTronics领域也具有广泛的应用,特别是在开发用于存储存储设备的新技术中。但是,这些实验和理论研究中产生的大量数据需要足够的工具,其中机器学习至关重要。我们使用卷积神经网络(CNN)来识别手性磁铁热力学阶段中的相关特征,包括(反)天际,bimeron,以及螺旋和铁磁状态。我们使用灵活的多标签分类框架,该框架可以正确分类,其中混合了不同的特征和相位。然后,我们训练CNN从晶格蒙特卡洛模拟的中间状态的快照中预测最终状态的特征。训练有素的模型允许在编队过程中可靠地识别不同阶段。因此,CNN可以显着加快3D材料的大规模模拟,这些模拟迄今为止一直是定量研究的瓶颈。此外,这种方法可以应用于手性磁体现实世界中混合状态和新兴特征的识别。
Chiral magnets have attracted a large amount of research interest in recent years because they support a variety of topological defects, such as skyrmions and bimerons, and allow for their observation and manipulation through several techniques. They also have a wide range of applications in the field of spintronics, particularly in developing new technologies for memory storage devices. However, the vast amount of data generated in these experimental and theoretical studies requires adequate tools, among which machine learning is crucial. We use a Convolutional Neural Network (CNN) to identify the relevant features in the thermodynamical phases of chiral magnets, including (anti-)skyrmions, bimerons, and helical and ferromagnetic states. We use a flexible multi-label classification framework that can correctly classify states in which different features and phases are mixed. We then train the CNN to predict the features of the final state from snapshots of intermediate states of a lattice Monte Carlo simulation. The trained model allows identifying the different phases reliably and early in the formation process. Thus, the CNN can significantly speed up the large-scale simulations for 3D materials that have been the bottleneck for quantitative studies so far. Moreover, this approach can be applied to the identification of mixed states and emerging features in real-world images of chiral magnets.