论文标题
预测论证框架
Forecasting Argumentation Frameworks
论文作者
论文摘要
我们介绍了预测论证框架(FAFS),这是一种基于论证的新方法,用于通过最近的判断预测研究所告知的预测。 FAFS组成了更新框架,这些框架授权(人类或人工)代理人随着时间的推移争论结果的可能性,例如政治选举的赢家或通货膨胀率的波动,同时在代理商的行为中标记了感知的非理性,以提高其预测准确性。 FAF包括五种参数类型,构成标准的参数,如双极论证中,以及新颖的提案论点并增加/减少修正案参数。我们适应了现有的渐进语义来确定提议论证的综合辩证性强度并定义非理性行为。然后,我们提供了一个简单的聚合函数,该函数从理性代理人的个人预测中产生了最终的预测。我们识别和研究FAF的特性,并进行经验评估,该评估标志着FAF的潜力增加了参与者的预测准确性。
We introduce Forecasting Argumentation Frameworks (FAFs), a novel argumentation-based methodology for forecasting informed by recent judgmental forecasting research. FAFs comprise update frameworks which empower (human or artificial) agents to argue over time about the probability of outcomes, e.g. the winner of a political election or a fluctuation in inflation rates, whilst flagging perceived irrationality in the agents' behaviour with a view to improving their forecasting accuracy. FAFs include five argument types, amounting to standard pro/con arguments, as in bipolar argumentation, as well as novel proposal arguments and increase/decrease amendment arguments. We adapt an existing gradual semantics for bipolar argumentation to determine the aggregated dialectical strength of proposal arguments and define irrational behaviour. We then give a simple aggregation function which produces a final group forecast from rational agents' individual forecasts. We identify and study properties of FAFs and conduct an empirical evaluation which signals FAFs' potential to increase the forecasting accuracy of participants.