论文标题

D4:用于抑郁诊断聊天的中国对话数据集

D4: a Chinese Dialogue Dataset for Depression-Diagnosis-Oriented Chat

论文作者

Yao, Binwei, Shi, Chao, Zou, Likai, Dai, Lingfeng, Wu, Mengyue, Chen, Lu, Wang, Zhen, Yu, Kai

论文摘要

在抑郁症诊断为导向的临床课程中,医生与充足的情绪支持进行对话,该对话指导患者根据临床诊断标准暴露其症状。这样的对话系统与现有的单一用途人机对话系统区分开来,因为它将面向任务和聊天的聊天与对话主题和过程中的独特性相结合。但是,由于与精神疾病相关的社会污名,与抑郁咨询和诊断有关的对话数据很少被披露。根据临床抑郁症诊断标准ICD-11和DSM-5,我们设计了一个3阶段的程序来构建D $^4 $:用于抑郁症诊断为导向抑郁症的聊天的中国对话数据集,在抑郁症的诊断结果和症状概述中,包括专业心理学家的诊断结果和症状。在新建的数据集中,建立了反映抑郁诊断过程的四个任务:响应产生,主题预测,对话摘要以及抑郁事件和自杀风险的严重性分类。多尺度评估结果表明,与基于规则的机器人相比,可以实现在我们数据集中培训的更具移情驱动和诊断准确的咨询对话系统。

In a depression-diagnosis-directed clinical session, doctors initiate a conversation with ample emotional support that guides the patients to expose their symptoms based on clinical diagnosis criteria. Such a dialogue system is distinguished from existing single-purpose human-machine dialog systems, as it combines task-oriented and chit-chats with uniqueness in dialogue topics and procedures. However, due to the social stigma associated with mental illness, the dialogue data related to depression consultation and diagnosis are rarely disclosed. Based on clinical depression diagnostic criteria ICD-11 and DSM-5, we designed a 3-phase procedure to construct D$^4$: a Chinese Dialogue Dataset for Depression-Diagnosis-Oriented Chat, which simulates the dialogue between doctors and patients during the diagnosis of depression, including diagnosis results and symptom summary given by professional psychiatrists for each conversation. Upon the newly-constructed dataset, four tasks mirroring the depression diagnosis process are established: response generation, topic prediction, dialog summary, and severity classification of depressive episode and suicide risk. Multi-scale evaluation results demonstrate that a more empathy-driven and diagnostic-accurate consultation dialogue system trained on our dataset can be achieved compared to rule-based bots.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源