论文标题
理性的Cherednik代数的曲折
Twists of rational Cherednik algebras
论文作者
论文摘要
我们表明,前两位作者引入的编织的Cherednik代数是$ G(m,p,n)$的不良复杂反射组的合理Cherednik代数的Cocycle曲折,当时$ g(m,p,n)$均匀。这为具有量子多项式不变的定期环的神秘反射组的新结构提供了新的结构。作为此结果的应用,我们表明,当且仅当其合理的对应物具有一个时,编织的Cherednik代数具有有限维度的表示。
We show that braided Cherednik algebras introduced by the first two authors are cocycle twists of rational Cherednik algebras of the imprimitive complex reflection groups $G(m,p,n)$, when $m$ is even. This gives a new construction of mystic reflection groups which have Artin-Schelter regular rings of quantum polynomial invariants. As an application of this result, we show that a braided Cherednik algebra has a finite-dimensional representation if and only if its rational counterpart has one.