论文标题

$ e_ {7(-5)} $的狄拉克系列

Dirac series of $E_{7(-5)}$

论文作者

Ding, Yi-Hao, Dong, Chao-Ping, Li, Ping-Yuan

论文摘要

使用锐化的Helgason-Johnson绑定,本文将所有不可约合的统一表示与$ e_ {7(-5)} $的非零狄拉克共同体分类。作为一个应用程序,我们发现Dirac共同体的偶数部分和奇数部分之间的取消是在某些$ e_ {7(-5)} $的单一表示情况下继续发生的。假设无限字符是不可或缺的,我们进一步改善了以$ e_ {7(-5)} $限制的Helgason-Johnson。这应该有助于人们理解该群体的统一双重双重的一部分。

Using the sharpened Helgason-Johnson bound, this paper classifies all the irreducible unitary representations with non-zero Dirac cohomology of $E_{7(-5)}$. As an application, we find that the cancellation between the even part and the odd part of the Dirac cohomology continues to happen for certain unitary representations of $E_{7(-5)}$. Assuming the infinitesimal character being integral, we further improve the Helgason-Johnson bound for $E_{7(-5)}$. This should help people to understand (part of) the unitary dual of this group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源