论文标题

多级不平衡培训的深度加强学习

Deep Reinforcement Learning for Multi-class Imbalanced Training

论文作者

Yang, Jenny, El-Bouri, Rasheed, O'Donoghue, Odhran, Lachapelle, Alexander S., Soltan, Andrew A. S., Clifton, David A.

论文摘要

随着记忆和计算能力的快速增长,数据集变得越来越复杂和不平衡。在临床数据的背景下,这一点尤其严重,在大多数类别中,许多情况下可能会有一个罕见的事件。我们介绍了一个基于强化学习的不平衡分类框架,用于培训极度不平衡的数据集,并将其扩展为多级设置。我们将决斗和双重Q学习架构结合在一起,并制定自定义奖励功能和情节培训程序,特别是处理多级不平衡训练的功能。使用现实世界中的临床案例研究,我们证明我们提出的框架的表现优于当前最新的学习方法,实现了更公平和平衡的分类,同时也显着改善了对少数类别的预测。

With the rapid growth of memory and computing power, datasets are becoming increasingly complex and imbalanced. This is especially severe in the context of clinical data, where there may be one rare event for many cases in the majority class. We introduce an imbalanced classification framework, based on reinforcement learning, for training extremely imbalanced data sets, and extend it for use in multi-class settings. We combine dueling and double deep Q-learning architectures, and formulate a custom reward function and episode-training procedure, specifically with the added capability of handling multi-class imbalanced training. Using real-world clinical case studies, we demonstrate that our proposed framework outperforms current state-of-the-art imbalanced learning methods, achieving more fair and balanced classification, while also significantly improving the prediction of minority classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源