论文标题

非脱位最小亚曼叶作为能量集合:一种变异方法

Non-degenerate minimal submanifolds as energy concentration sets: a variational approach

论文作者

De Philippis, Guido, Pigati, Alessandro

论文摘要

我们证明,可以作为(重新定制的)金茨堡 - landau功能的临界地图家族的能量浓度集获得的每个非分类的最低次级子序列。证明纯粹是变异的,并遵循了耶拉德和斯特恩伯格制定的策略,扩大了Colinet-Jerrard-Sternberg的Geodesics的最新结果。同样的证明也适用于$ u(1)$ -Yang-mills-higgs和Allen-Cahn-Hilliard Energies。

We prove that every non-degenerate minimal submanifold of codimension two can be obtained as the energy concentration set of a family of critical maps for the (rescaled) Ginzburg-Landau functional. The proof is purely variational, and follows the strategy laid out by Jerrard and Sternberg, extending a recent result for geodesics by Colinet-Jerrard-Sternberg. The same proof applies also to the $U(1)$-Yang-Mills-Higgs and to the Allen-Cahn-Hilliard energies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源