论文标题

可视化多级回归和阶段:当前实践的替代方案

Visualising Multilevel Regression and Poststratification: Alternatives to the Current Practice

论文作者

Amaliah, Dewi

论文摘要

调查为政策制定,决策和对社会的理解提供了重要的证据。但是,进行提供亚群水平估计所需的大量调查是昂贵且耗时的。多级回归和延伸后(MRP)是一种有前途的方法,可以为调查提供可靠的估计值,而无需可靠的直接估计所需的数据量。图形显示已被广泛用于交流和诊断MRP估计值。但是,很少有关于如何在该领域进行可视化的研究。因此,本研究使用系统文献综述研究了当前的MRP可视化实践。这项研究还采用MRP来估算美国2016年总统选举的特朗普投票份额,使用合作国会选举研究(CCES)数据来说明当前可视化实践的含义,并探索改进的替代方案。我们发现,尽管对调查推断的重要性很重要,但在当前做法中并没有经常显示不确定性。 Choropleth地图是显示MRP估计值的最常使用的,即使它仅显示点估计值并可能阻碍传达的信息。使用各种图形表示,我们表明具有不确定性的可视化可以说明不同模型规范对估计结果的影响。此外,这项研究还提出了一种可视化策略,在评估MRP模型时还考虑了偏见变化的权衡。

Surveys provide important evidence for policymaking, decision-making, and understanding of society. However, conducting the large surveys required to provide subpopulation level estimates is expensive and time-consuming. Multilevel Regression and Poststratification (MRP) is a promising method to provide reliable estimates for subpopulations from surveys without the amount of data needed for reliable direct estimates. Graphical displays have been widely used to communicate and diagnose MRP estimates. However, there have been few studies on how visualisation should be performed in this field. Accordingly, this study examines the current practice of MRP visualisation using a systematic literature review. This study also applies MRP to estimate the Trump vote share in the U.S. 2016 presidential election using the Cooperative Congressional Election Study (CCES) data to illustrate the implication of current visualisation practices and explore alternatives for improvement. We find that uncertainty is not often displayed in the current practice, despite its importance for survey inference. The choropleth map is the most frequently used to display MRP estimates even though it only shows point estimates and could hinder the information conveyed. Using various graphical representations, we show that visualisation with uncertainty can illustrate the effect of different model specifications on the estimation result. In addition, this study also proposes a visualisation strategy to also take the bias-variance trade-off into account when evaluating MRP models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源