论文标题

统计特性和星形分子云中的相关长度:ii。引力电位和病毒参数

Statistical properties and correlation length in star-forming molecular clouds: II. Gravitational potential and virial parameter

论文作者

Jaupart, Etienne, Chabrier, Gilles

论文摘要

在本系列的第一篇文章中,我们使用了厄法德理论来评估统计方法的有效性,以从有限的观测值或模拟中表征恒星形成分子云(MC)的各种特性。这允许正确确定获得的统计数量的各种体积平均值的置信区间,这些统计数量获得了观测值或数值模拟。 在本文中,我们将相同的形式主义应用于MCS的另一项(观察性或数值)研究。确实,由于观察结果无法完全揭示恒星形成云的内部密度结构的复杂性,因此重要的是要知道全局可观察的估计值(例如云的总质量和大小)是否可以准确地估计表征云动力学的各种关键物理量。最重要的是正确确定云的总重力(结合)能量和病毒参数。我们表明,尽管对于不在恒星形成过于高级阶段的云中,例如北极星或猎户座B,但仅对它们的质量和大小的知识足以从观察值(即在实际空间中)准确地确定上述数量。相比之下,我们表明,对于周期框中的数值模拟,这不再是正确的。在这两种情况下,我们得出病毒参数比率的关系。

In the first article of this series, we have used the ergodic theory to assess the validity of a statistical approach to characterize various properties of star-forming molecular clouds (MCs) from a limited number of observations or simulations. This allows the proper determination of confidence intervals for various volumetric averages of statistical quantities obtained form observations or numerical simulations. In this joint paper, we apply the same formalism to a different kind of (observational or numerical) study of MCs. Indeed, as observations cannot fully unravel the complexity of the inner density structure of star forming clouds, it is important to know whether global observable estimates, such as the total mass and size of the cloud, can give an accurate estimation of various key physical quantities that characterize the dynamics of the cloud. Of prime importance is the correct determination of the total gravitational (binding) energy and virial parameter of a cloud. We show that, whereas for clouds that are not in a too advanced stage of star formation, such as Polaris or Orion B, the knowledge of only their mass and size is sufficient to yield an accurate determination of the aforementioned quantities from observations (i.e. in real space). In contrast, we show that this is no longer true for numerical simulations in a periodic box. We derive a relationship for the ratio of the virial parameter in these two respective cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源