论文标题
半层次中的语义嵌入
Semantic Embeddings in Semilattices
论文作者
论文摘要
要表示从数学概念到现实世界对象的任何内容,我们必须诉诸编码。编码(例如书面语言)通常假设一个解码器,可以理解丰富的共享代码。语义嵌入是一种编码形式,它假设一个没有知识或知识的解码器,超出了数学形式主义(例如代数)的基本规则。在这里,我们对半层次中语义嵌入的正式定义可以用于解决机器学习和经典的计算机科学问题。具体而言,问题的语义嵌入在这里是对问题的编码,作为代数理论中扩展半层次理论的句子。我们使用最近引入的有限雾化半纹身的形式主义来研究嵌入的特性及其有限模型。对于嵌入半层次中的问题,我们表明每个解决方案都有一个模型,该模型由嵌入式最自由模型的非冗余原子的不可还原子集雾化。我们提供了语义嵌入的示例,可用于找到N-Queen完成的解决方案,Sudoku和Hamiltonian Path问题。
To represent anything from mathematical concepts to real-world objects, we have to resort to an encoding. Encodings, such as written language, usually assume a decoder that understands a rich shared code. A semantic embedding is a form of encoding that assumes a decoder with no knowledge, or little knowledge, beyond the basic rules of a mathematical formalism such as an algebra. Here we give a formal definition of a semantic embedding in a semilattice which can be used to resolve machine learning and classic computer science problems. Specifically, a semantic embedding of a problem is here an encoding of the problem as sentences in an algebraic theory that extends the theory of semilattices. We use the recently introduced formalism of finite atomized semilattices to study the properties of the embeddings and their finite models. For a problem embedded in a semilattice, we show that every solution has a model atomized by an irreducible subset of the non-redundant atoms of the freest model of the embedding. We give examples of semantic embeddings that can be used to find solutions for the N-Queen's completion, the Sudoku, and the Hamiltonian Path problems.