论文标题
快速推断和转移组成任务结构,以进行几次任务概括
Fast Inference and Transfer of Compositional Task Structures for Few-shot Task Generalization
论文作者
论文摘要
我们解决了除基于像素的游戏或模拟器之外的复杂结构的现实世界问题。我们将其提出为一些射击的增强学习问题,其中任务的特征是定义一组子任务及其依赖性的子任务图。不同于以前试图直接推断非结构化任务嵌入的Meta-RL方法,我们的多任务子任务图推理器(MTSGI)首先从训练任务中以子任务图来渗透常见的高级任务结构,并将其用作改进测试任务推进的先进之前。我们对2D网格世界和复杂的Web导航域的实验结果表明,所提出的方法可以学习和利用任务的共同基础结构,以更快地适应不见了的任务,而不是元元素增强学习,等级结构强化学习,以及其他heuristic extents。
We tackle real-world problems with complex structures beyond the pixel-based game or simulator. We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph that defines a set of subtasks and their dependencies that are unknown to the agent. Different from the previous meta-rl methods trying to directly infer the unstructured task embedding, our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks, and use it as a prior to improve the task inference in testing. Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks than various existing algorithms such as meta reinforcement learning, hierarchical reinforcement learning, and other heuristic agents.