论文标题

DPSNN:具有暂时增强池的差异私人尖峰神经网络

DPSNN: A Differentially Private Spiking Neural Network with Temporal Enhanced Pooling

论文作者

Wang, Jihang, Zhao, Dongcheng, Shen, Guobin, Zhang, Qian, Zeng, Yi

论文摘要

隐私保护是机器学习算法中的一个至关重要问题,并且当前的隐私保护与基于真实价值的传统人工神经网络相结合。新一代人工神经网络尖峰神经网络(SNN)在许多领域都起着至关重要的作用。因此,迫切需要对SNN隐私保护的研究。本文将差异隐私(DP)算法与SNN结合在一起,并提出了一个私人尖峰神经网络(DPSNN)。 SNN使用离散的尖峰序列来传输信息,并结合DP引入的梯度噪声,从而保持SNN保持强大的隐私保护。同时,为了使SNN在获得高隐私保护的同时保持高性能,我们提出了时间增强的池(TEP)方法。它将SNN的时间信息完全集成到空间信息传输中,这使SNN能够执行更好的信息传输。我们对静态和神经形态数据集进行了实验,实验结果表明,我们的算法在提供强大的隐私保护的同时仍保持高性能。

Privacy protection is a crucial issue in machine learning algorithms, and the current privacy protection is combined with traditional artificial neural networks based on real values. Spiking neural network (SNN), the new generation of artificial neural networks, plays a crucial role in many fields. Therefore, research on the privacy protection of SNN is urgently needed. This paper combines the differential privacy(DP) algorithm with SNN and proposes a differentially private spiking neural network (DPSNN). The SNN uses discrete spike sequences to transmit information, combined with the gradient noise introduced by DP so that SNN maintains strong privacy protection. At the same time, to make SNN maintain high performance while obtaining high privacy protection, we propose the temporal enhanced pooling (TEP) method. It fully integrates the temporal information of SNN into the spatial information transfer, which enables SNN to perform better information transfer. We conduct experiments on static and neuromorphic datasets, and the experimental results show that our algorithm still maintains high performance while providing strong privacy protection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源