论文标题

具有非高斯可能性的高斯过程的集成梯度归因

Integrated Gradient attribution for Gaussian Processes with non-Gaussian likelihoods

论文作者

Seitz, Sarem

论文摘要

高斯工艺(GP)模型是具有稳固理论基础的概率机器学习中的强大工具。多亏了当前的进步,使用GPS建模复杂的数据变得越来越可行,这使它们成为深度学习和相关方法的有趣替代方法。随着后者对社会的影响越来越大,建模的决策过程透明和可解释的需求现在是研究的重点。可解释的机器学习的主要方向是使用基于梯度的方法(例如集成梯度)来量化特征归因,这是针对给定的感兴趣数据点的本地。由于对GPS及其部分导数的行为进行了充分的研究且直接得出,因此研究基于梯度的GPS的解释性是一个有希望的研究方向。不幸的是,在处理非高斯目标数据(如分类或更复杂的回归问题)时,GP的部分衍生物在处理非高斯目标数据时会变得不那么微不足道。因此,本文提出了一种将基于集成的基于梯度的解释性应用于非高斯GP模型的方法,并提供分析和近似解决方案。这将基于梯度的解释性扩展到具有复杂可能性的概率模型,以扩展其实际适用性。

Gaussian Process (GP) models are a powerful tool in probabilistic machine learning with a solid theoretical foundation. Thanks to current advances, modeling complex data with GPs is becoming increasingly feasible, which makes them an interesting alternative to deep learning and related approaches. As the latter are getting more and more influential on society, the need for making a model's decision making process transparent and explainable is now a major focus of research. A major direction in interpretable machine learning is the use of gradient-based approaches, such as Integrated Gradients, to quantify feature attribution, locally for a given datapoint of interest. Since GPs and the behavior of their partial derivatives are well studied and straightforward to derive, studying gradient-based explainability for GPs is a promising direction of research. Unfortunately, partial derivatives for GPs become less trivial to handle when dealing with non-Gaussian target data as in classification or more sophisticated regression problems. This paper therefore proposes an approach for applying Integrated Gradient-based explainability to non-Gaussian GP models, offering both analytical and approximate solutions. This extends gradient-based explainability to probabilistic models with complex likelihoods to extend their practical applicability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源