论文标题

Krylov的复杂性和正交多项式

Krylov complexity and orthogonal polynomials

论文作者

Mück, Wolfgang, Yang, Yi

论文摘要

Krylov的复杂性测量了操作员相对于基础的增长,这适用于海森堡时间的演变。该基础的构建依赖于兰开斯算法,也称为递归法。可以用正交多项式来描述Krylov复杂性的数学。我们提供了对该主题的教学介绍,并在分析上进行了许多涉及经典正交多项式,Hahn类别的多项式和Tricomi-Carlitz多项式的示例。

Krylov complexity measures operator growth with respect to a basis, which is adapted to the Heisenberg time evolution. The construction of that basis relies on the Lanczos algorithm, also known as the recursion method. The mathematics of Krylov complexity can be described in terms of orthogonal polynomials. We provide a pedagogical introduction to the subject and work out analytically a number of examples involving the classical orthogonal polynomials, polynomials of the Hahn class, and the Tricomi-Carlitz polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源