论文标题
稳定抛物线抛物线$ \ textnormal {pgl}(r)$ - $ - 捆绑的brauer组
Brauer group of moduli stack of stable parabolic $\textnormal{PGL}(r)$-bundles over a curve
论文作者
论文摘要
令$ k $为特征零的代数封闭字段。我们证明,稳定的抛物线股份的Moduli堆栈堆积组,TextNormal {pgl}(r,k)$ - 与完整的flag式抛物性抛物性结构捆绑在曲线上的任意抛物线分离器上,曲目$ x $ x $ x $ coinciess cocine coinces cocine cocine $ \ textnormal {pgl}(r,k)$ - 捆绑汇款。我们还计算了该粗型号的平滑座位的Brauer组,以实现满足某些条件的更通用的准抛物性类型和权重。
Let $k$ be an algebraically closed field of characteristic zero. We prove that the Brauer group of moduli stack of stable parabolic $\textnormal{PGL}(r,k)$-bundles with full flag quasi-parabolic structures at an arbitrary parabolic divisor on a curve $X$ coincides with the Brauer group of the smooth locus of the corresponding coarse moduli space of parabolic $\textnormal{PGL}(r,k)$-bundles. We also compute the Brauer group of the smooth locus of this coarse moduli for more general quasi-parabolic types and weights satisfying certain conditions.