论文标题
通过来源感知影响功能了解程序化弱监督
Understanding Programmatic Weak Supervision via Source-aware Influence Function
论文作者
论文摘要
程序化弱监督(PWS)汇总了多个弱监督资源的来源投票成概率培训标签,而这些培训标签又用于培训最终模型。随着其越来越流行,至关重要的是,拥有一些工具让用户了解管道中每个组件(例如,源投票或培训数据)的影响并解释最终模型行为。为了实现这一目标,我们建立在影响函数的基础上(如果),并提出了源吸引if IF,它利用概率标签的生成过程分解了最终模型的训练目标,然后计算与每个(数据,源,类)元组相关的影响。然后可以使用这些原始影响得分来估计PW的各个组成部分的影响,例如来源投票,监督来源和培训数据。在不同域的数据集上,我们演示了多种用例:(1)从多个角度解释错误的预测,这些距离揭示了对PWS管道进行调试的见解,(2)确定对基础线的含量的错误标记,比基础线比底线相比9%-37%,以及(3)通过将最终模型的总体化绩效提高到培训的培训中(13%),该培训的培训率是更好的(13%)。
Programmatic Weak Supervision (PWS) aggregates the source votes of multiple weak supervision sources into probabilistic training labels, which are in turn used to train an end model. With its increasing popularity, it is critical to have some tool for users to understand the influence of each component (e.g., the source vote or training data) in the pipeline and interpret the end model behavior. To achieve this, we build on Influence Function (IF) and propose source-aware IF, which leverages the generation process of the probabilistic labels to decompose the end model's training objective and then calculate the influence associated with each (data, source, class) tuple. These primitive influence score can then be used to estimate the influence of individual component of PWS, such as source vote, supervision source, and training data. On datasets of diverse domains, we demonstrate multiple use cases: (1) interpreting incorrect predictions from multiple angles that reveals insights for debugging the PWS pipeline, (2) identifying mislabeling of sources with a gain of 9%-37% over baselines, and (3) improving the end model's generalization performance by removing harmful components in the training objective (13%-24% better than ordinary IF).