论文标题
多体局部系统的模拟复杂性
Simulation Complexity of Many-Body Localized Systems
论文作者
论文摘要
我们使用复杂性理论严格研究在多体(MBL)汉密尔顿人中经典模拟进化的困难。使用定义功能,MBL系统具有一组完整的准腹部运动积分(LIOMS),我们演示了模拟此类系统(如演化时间的函数)的经典复杂性的过渡。一方面,我们构建了一个准精液量张量 - 网络启发的算法,用于对1D MBL系统的强仿真(即计算局部可观察物的任意产品的期望值),以在系统大小中随时演变。另一方面,我们证明即使是弱模拟,即采样,在成倍长期的演变时间后,假设人们普遍认为对复杂性理论的猜想,就会正式变得很难。最后,使用经典仿真结果的后果,我们还表明,MBL系统的量子电路复杂性在进化时间是sublinear。该结果与最近证明随机量子电路的复杂性随着时间的推移线性增长的证据。
We use complexity theory to rigorously investigate the difficulty of classically simulating evolution under many-body localized (MBL) Hamiltonians. Using the defining feature that MBL systems have a complete set of quasilocal integrals of motion (LIOMs), we demonstrate a transition in the classical complexity of simulating such systems as a function of evolution time. On one side, we construct a quasipolynomial-time tensor-network-inspired algorithm for strong simulation of 1D MBL systems (i.e., calculating the expectation value of arbitrary products of local observables) evolved for any time polynomial in the system size. On the other side, we prove that even weak simulation, i.e. sampling, becomes formally hard after an exponentially long evolution time, assuming widely believed conjectures in complexity theory. Finally, using the consequences of our classical simulation results, we also show that the quantum circuit complexity for MBL systems is sublinear in evolution time. This result is a counterpart to a recent proof that the complexity of random quantum circuits grows linearly in time.