论文标题

通过增强树的可能性学习EFT的可能性

Learning the EFT likelihood with tree boosting

论文作者

Chatterjee, Suman, Rohshap, Stefan, Schöfbeck, Robert, Schwarz, Dennis

论文摘要

我们开发了一种增强树的算法,用于在有效的田间理论中对多个威尔逊系数的对撞机测量,这些算法描述了粒子物理的标准模型以外的现象。判别功能的设计对模拟数据集的每个事实信息进行编码,该信息编码了威尔逊系数的不同值的预测。此``增强信息树''算法在威尔逊系数的扩展中提供了几乎最佳的歧视功率订单,并接近了最佳的可能性比率测试统计量。作为原理证明,我们将算法应用于$ \ textrm {pp} \ rightarrow \ textrm {zh} $进程用于不同类型的建模。

We develop a tree boosting algorithm for collider measurements of multiple Wilson coefficients in effective field theories describing phenomena beyond the standard model of particle physics. The design of the discriminant exploits per-event information of the simulated data sets that encodes the predictions for different values of the Wilson coefficients. This ``Boosted Information Tree'' algorithm provides nearly optimal discrimination power order-by-order in the expansion in the Wilson coefficients and approaches the optimal likelihood ratio test statistic. As a proof-of-principle, we apply the algorithm to the $\textrm{pp}\rightarrow\textrm{Zh}$ process for different types of modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源