论文标题

有效计数球包装

Effective counting in sphere packings

论文作者

Kontorovich, Alex, Lutsko, Christopher

论文摘要

鉴于Zariski密集,离散的组,$γ$的$γ$,作用于$(n + 1)$ - 尺寸双曲线空间,我们使用频谱方法来获得尖锐的渐近公式,以达到某些$γ$ -ORBITS的增长率。特别是,这使我们能够为Apollonian和(更一般)Kleinian Sphere填充计数问题获得最著名的有效错误率,也就是说,计数球的数量与受增长参数界定的半径一样。我们的方法通过两种方式扩展了Kontorovich [KON09]的方法,该方法本身就是Lax-Phillips [LP82]的轨道计数方法的扩展。首先,我们在通过技术截止和平滑操作考虑的离散子组上删除了紧凑条件。其次,我们开发了一个坐标系,该坐标系自然与球体计数问题的基础性几何形状相对应,并在这些坐标中的Casimir运算符和HAAR测量中给出结构定理。

Given a Zariski-dense, discrete group, $Γ$, of isometries acting on $(n + 1)$-dimensional hyperbolic space, we use spectral methods to obtain a sharp asymptotic formula for the growth rate of certain $Γ$-orbits. In particular, this allows us to obtain a best-known effective error rate for the Apollonian and (more generally) Kleinian sphere packing counting problems, that is, counting the number of spheres in such with radius bounded by a growing parameter. Our method extends the method of Kontorovich [Kon09], which was itself an extension of the orbit counting method of Lax-Phillips [LP82], in two ways. First, we remove a compactness condition on the discrete subgroups considered via a technical cut-off and smoothing operation. Second, we develop a coordinate system which naturally corresponds to the inversive geometry underlying the sphere counting problem, and give structure theorems on the arising Casimir operator and Haar measure in these coordinates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源