论文标题
分配强大的高斯过程回归和贝叶斯逆问题
Distributionally Robust Gaussian Process Regression and Bayesian Inverse Problems
论文作者
论文摘要
我们研究了贝叶斯非参数估计中两个代表性问题的分布强大的优化公式(即,最小值游戏):高斯过程回归,更一般而言是线性反问题。我们的配方在无限二维空间中寻求最佳的于点误差预测指标,以针对对手,该对手在瓦瑟斯坦球中选择了最差的模型,围绕着名义上的无限二维贝叶斯模型。选择运输成本来控制特征,例如允许对手注射的样品路径的粗糙度程度。我们表明,游戏具有明确的值(即,在Max-Min等于Min-Max的意义上,强度具有强度的二元性),并且存在一个唯一的NASH平衡,可以通过一系列有限维近似值来计算。至关重要的是,最坏的案例分布本身就是高斯。我们通过一组数值实验探索NASH平衡的特性以及超参数的影响,证明了我们的建模框架的多功能性。
We study a distributionally robust optimization formulation (i.e., a min-max game) for two representative problems in Bayesian nonparametric estimation: Gaussian process regression and, more generally, linear inverse problems. Our formulation seeks the best mean-squared error predictor, in an infinite-dimensional space, against an adversary who chooses the worst-case model in a Wasserstein ball around a nominal infinite-dimensional Bayesian model. The transport cost is chosen to control features such as the degree of roughness of the sample paths that the adversary is allowed to inject. We show that the game has a well-defined value (i.e., strong duality holds in the sense that max-min equals min-max) and that there exists a unique Nash equilibrium which can be computed by a sequence of finite-dimensional approximations. Crucially, the worst-case distribution is itself Gaussian. We explore properties of the Nash equilibrium and the effects of hyperparameters through a set of numerical experiments, demonstrating the versatility of our modeling framework.