论文标题
Qspeech:低度量子语音应用程序工具包
QSpeech: Low-Qubit Quantum Speech Application Toolkit
论文作者
论文摘要
Quartimed量子量子(NISQ)时代很常见。但是,由于需要许多量子位的量子量子电路(VQC),因此在低量量子设备上运行的量子神经网络(QNN)将很困难。因此,在低度量子设备上使用VQC运行的QNN至关重要。在这项研究中,我们提出了一种称为低量VQC的新型VQC。 VQC需要基于输入维度的众多量子位;但是,具有线性转换的低QUIT VQC可以解放这种情况。因此,它允许QNN在语音应用程序上以低量量子设备运行。此外,与VQC相比,我们提出的低量VQC可以更稳定训练过程。基于低度VQC,我们实现了Qspeech,这是一个库,用于快速对语音字段中混合量子古典神经网络进行快速原型制作。它具有许多用于语音应用的量子神经层和QNN模型。语音命令识别和文本到语音的实验表明,我们提出的低标准VQC优于VQC,并且更稳定。
Quantum devices with low qubits are common in the Noisy Intermediate-Scale Quantum (NISQ) era. However, Quantum Neural Network (QNN) running on low-qubit quantum devices would be difficult since it is based on Variational Quantum Circuit (VQC), which requires many qubits. Therefore, it is critical to make QNN with VQC run on low-qubit quantum devices. In this study, we propose a novel VQC called the low-qubit VQC. VQC requires numerous qubits based on the input dimension; however, the low-qubit VQC with linear transformation can liberate this condition. Thus, it allows the QNN to run on low-qubit quantum devices for speech applications. Furthermore, as compared to the VQC, our proposed low-qubit VQC can stabilize the training process more. Based on the low-qubit VQC, we implement QSpeech, a library for quick prototyping of hybrid quantum-classical neural networks in the speech field. It has numerous quantum neural layers and QNN models for speech applications. Experiments on Speech Command Recognition and Text-to-Speech show that our proposed low-qubit VQC outperforms VQC and is more stable.