论文标题

从$ p $ - 华盛顿的界限到中度偏差

From $p$-Wasserstein Bounds to Moderate Deviations

论文作者

Fang, Xiao, Koike, Yuta

论文摘要

我们通过$ p $ - 沃瑟尔斯坦界使用一种新方法来证明(多变量)正常近似值中的cramér-type中度偏差。在经典的环境中,$ w $是$ n $独立的标准化和相同分布的(i.i.d.)随机变量,带有子表达的尾巴,我们的方法恢复了$ 0 \ leq x = o(n^{1/6})$的最佳范围(n^{1/6})$,几乎最佳的错误率$ o(1+x)(1+x)(1+x)(1+x)(\ log n+x^2) $ p(w> x)/(1-φ(x))\至1 $,其中$φ$是标准的正态分布函数。我们的方法还适用于依赖的随机变量(向量),我们将应用程序应用于组合中心限制定理,Wiener混乱,均匀的总和和局部依赖性。我们方法的关键步骤是表明,随机变量(矢量)感兴趣的分布与正态分布之间的$ P $ - WASSERSTEIN距离会增长,例如$ O(p^αδ)$,$ 1 \ leq p \ leq p \ leq p_0 $,对于某些常数$α,δ$和$ p_0 $。在上述I.I.D.中设置,$α= 1,δ= 1/\ sqrt {n},p_0 = n^{1/3} $。为此,我们使用Stein的方法获得了(多元)正常近似值的一般$ p $ -Wasserstein界限。

We use a new method via $p$-Wasserstein bounds to prove Cramér-type moderate deviations in (multivariate) normal approximations. In the classical setting that $W$ is a standardized sum of $n$ independent and identically distributed (i.i.d.) random variables with sub-exponential tails, our method recovers the optimal range of $0\leq x=o(n^{1/6})$ and the near optimal error rate $O(1)(1+x)(\log n+x^2)/\sqrt{n}$ for $P(W>x)/(1-Φ(x))\to 1$, where $Φ$ is the standard normal distribution function. Our method also works for dependent random variables (vectors) and we give applications to the combinatorial central limit theorem, Wiener chaos, homogeneous sums and local dependence. The key step of our method is to show that the $p$-Wasserstein distance between the distribution of the random variable (vector) of interest and a normal distribution grows like $O(p^αΔ)$, $1\leq p\leq p_0$, for some constants $α, Δ$ and $p_0$. In the above i.i.d. setting, $α=1, Δ=1/\sqrt{n}, p_0=n^{1/3}$. For this purpose, we obtain general $p$-Wasserstein bounds in (multivariate) normal approximations using Stein's method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源