论文标题

关于本地综合型汉密尔顿动力学和汉密尔顿 - 雅各比理论

On Locally Conformally Cosymplectic Hamiltonian Dynamics and Hamilton-Jacobi Theory

论文作者

Ateşli, Begüm, Esen, Oğul, de León, Manuel, Sardón, Cristina

论文摘要

宇宙几何形状已被证明是描述时间依赖性汉密尔顿动力学的非常有用的几何背景。在这项工作中,我们解决了未能在全球定义的局部宇宙化汉密尔顿动力学的全球化问题。我们研究了在这种LCC歧管上构建的局部共形偶然共核(缩写为LCC)的几何形状(作为LCC的缩写)。此外,我们在此几何框架上提供了几何汉密尔顿 - 雅各比理论。

Cosymplectic geometry has been proven to be a very useful geometric background to describe time-dependent Hamiltonian dynamics. In this work, we address the globalization problem of locally cosymplectic Hamiltonian dynamics that failed to be globally defined. We investigate both the geometry of locally conformally cosymplectic (abbreviated as LCC) manifolds and the Hamiltonian dynamics constructed on such LCC manifolds. Further, we provide a geometric Hamilton-Jacobi theory on this geometric framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源