论文标题

TransBoost:使用深层转导提高最佳成像网性能

TransBoost: Improving the Best ImageNet Performance using Deep Transduction

论文作者

Belhasin, Omer, Bar-Shalom, Guy, El-Yaniv, Ran

论文摘要

本文讨论了深层的跨传输学习,并提出了TransBoost作为微调任何深神经模型的程序,以提高其在培训时提供的任何(未标记的)测试集上的性能。 TransBoost的灵感来自较大的边缘原理,并且易于使用且易于使用。我们的方法大大改善了在各种体系结构上的分类性能,例如Resnet,MobilenetV3-L,EdgitionNetB0,Vit-S和Convnext-T,从而导致最新的转导性能。此外,我们表明TransBoost在各种图像分类数据集上有效。提供TransBoost的实现,网址为:https://github.com/omerb01/transboost。

This paper deals with deep transductive learning, and proposes TransBoost as a procedure for fine-tuning any deep neural model to improve its performance on any (unlabeled) test set provided at training time. TransBoost is inspired by a large margin principle and is efficient and simple to use. Our method significantly improves the ImageNet classification performance on a wide range of architectures, such as ResNets, MobileNetV3-L, EfficientNetB0, ViT-S, and ConvNext-T, leading to state-of-the-art transductive performance. Additionally we show that TransBoost is effective on a wide variety of image classification datasets. The implementation of TransBoost is provided at: https://github.com/omerb01/TransBoost .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源