论文标题

关键词和实例:层次对比学习框架,将文本生成的混合粒度统一

Keywords and Instances: A Hierarchical Contrastive Learning Framework Unifying Hybrid Granularities for Text Generation

论文作者

Li, Mingzhe, Lin, XieXiong, Chen, Xiuying, Chang, Jinxiong, Zhang, Qishen, Wang, Feng, Wang, Taifeng, Liu, Zhongyi, Chu, Wei, Zhao, Dongyan, Yan, Rui

论文摘要

对比学习在发电任务中取得了令人印象深刻的成功,以使“暴露偏见”问题折磨,并歧视参考的不同质量。现有的作品主要集中在实例级别上的对比度学习,而不歧视每个单词的贡献,而关键字是文本的要素,并主导了受约束的映射关系。因此,在这项工作中,我们提出了一种层次对比学习机制,该机制可以在输入文本中统一混合粒度语义含义。具体而言,我们首先通过正面阴性对的对比相关性提出一个关键字图,以迭代地抛光关键字表示。然后,我们在实例级别和关键字级中构建内部对比度,在其中假设单词是从句子分布中采样节点。最后,为了弥合独立的对比度之间的差距并解决了常见的对比度消失问题,我们提出了一种对比机制,该机制分别衡量对比偏向关键字节点与实例分布之间的差异。实验表明,我们的模型在释义,对话生成和讲故事的任务上的表现优于竞争基准。

Contrastive learning has achieved impressive success in generation tasks to militate the "exposure bias" problem and discriminatively exploit the different quality of references. Existing works mostly focus on contrastive learning on the instance-level without discriminating the contribution of each word, while keywords are the gist of the text and dominant the constrained mapping relationships. Hence, in this work, we propose a hierarchical contrastive learning mechanism, which can unify hybrid granularities semantic meaning in the input text. Concretely, we first propose a keyword graph via contrastive correlations of positive-negative pairs to iteratively polish the keyword representations. Then, we construct intra-contrasts within instance-level and keyword-level, where we assume words are sampled nodes from a sentence distribution. Finally, to bridge the gap between independent contrast levels and tackle the common contrast vanishing problem, we propose an inter-contrast mechanism that measures the discrepancy between contrastive keyword nodes respectively to the instance distribution. Experiments demonstrate that our model outperforms competitive baselines on paraphrasing, dialogue generation, and storytelling tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源