论文标题

Deep Hoint:在临床存在下的稳健生存建模

DeepJoint: Robust Survival Modelling Under Clinical Presence Shift

论文作者

Jeanselme, Vincent, Martin, Glen, Peek, Niels, Sperrin, Matthew, Tom, Brian, Barrett, Jessica

论文摘要

医学中的观察数据是由于患者与医疗保健系统之间的复杂相互作用而产生的。抽样过程通常是高度不规则的,并且本身构成了一个内容丰富的过程。当使用此类数据开发预测模型时,这种现象通常会被忽略,从而导致实践发展时模型的次优性能和普遍性。我们提出了一个多任务复发性神经网络,该网络模拟了三个临床存在维度(即纵向,观察和失踪过程)与生存结果并行。在使用MIMIC III实验室测试的预测任务上,与最先进的预测模型相比,这三个过程的显式建模显示出改善的性能(1天视野:0.878)。更重要的是,拟议的方法在临床存在环境中的变化更为强大,这是通过工作日和周末录取的患者之间的表现比较证明的。该分析表明,研究和利用临床存在以提高性能并创建更可运输的临床模型的重要性。

Observational data in medicine arise as a result of the complex interaction between patients and the healthcare system. The sampling process is often highly irregular and itself constitutes an informative process. When using such data to develop prediction models, this phenomenon is often ignored, leading to sub-optimal performance and generalisability of models when practices evolve. We propose a multi-task recurrent neural network which models three clinical presence dimensions -- namely the longitudinal, the inter-observation and the missingness processes -- in parallel to the survival outcome. On a prediction task using MIMIC III laboratory tests, explicit modelling of these three processes showed improved performance in comparison to state-of-the-art predictive models (C-index at 1 day horizon: 0.878). More importantly, the proposed approach was more robust to change in the clinical presence setting, demonstrated by performance comparison between patients admitted on weekdays and weekends. This analysis demonstrates the importance of studying and leveraging clinical presence to improve performance and create more transportable clinical models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源