论文标题

测量智能手机照片的感知颜色差异

Measuring Perceptual Color Differences of Smartphone Photographs

论文作者

Wang, Zhihua, Xu, Keshuo, Yang, Yang, Dong, Jianlei, Gu, Shuhang, Xu, Lihao, Fang, Yuming, Ma, Kede

论文摘要

在现代智能手机摄影中,测量感知差异(CD)非常重要。尽管历史悠久,但大多数CD措施都受到均匀颜色斑块或有限数量的简单自然照相图像的心理物理数据的限制。因此,现有CD的测量是否在智能手机摄影时代概括为以更大的内容复杂性和基于学习的图像信号处理器为特征是值得怀疑的。在本文中,我们将最大的图像数据集组合在一起,用于感知CD评估,其中摄影图像为1)由六张旗舰智能手机捕获,2)由Photoshop更改,3)智能手机内置过滤器后处理,而4)4)用不正确的色谱物复制。然后,我们进行了大规模的心理物理实验,以在经过精心控制的实验室环境中收集30,000张图像对的感知CD。基于新建立的数据集,我们是基于轻量级神经网络的端到端可学习的CD公式的首次尝试之一,作为对以前的几个指标的概括。广泛的实验表明,优化公式的表现优于33现有的CD量度,可提供合理的局部CD地图,而无需使用密集的监督,可以很好地推广到均质的颜色贴片数据,并且在数学上,经验上的表现是正确的指标。我们的数据集和代码可在https://github.com/hellooks/cdnet上公开获取。

Measuring perceptual color differences (CDs) is of great importance in modern smartphone photography. Despite the long history, most CD measures have been constrained by psychophysical data of homogeneous color patches or a limited number of simplistic natural photographic images. It is thus questionable whether existing CD measures generalize in the age of smartphone photography characterized by greater content complexities and learning-based image signal processors. In this paper, we put together so far the largest image dataset for perceptual CD assessment, in which the photographic images are 1) captured by six flagship smartphones, 2) altered by Photoshop, 3) post-processed by built-in filters of the smartphones, and 4) reproduced with incorrect color profiles. We then conduct a large-scale psychophysical experiment to gather perceptual CDs of 30,000 image pairs in a carefully controlled laboratory environment. Based on the newly established dataset, we make one of the first attempts to construct an end-to-end learnable CD formula based on a lightweight neural network, as a generalization of several previous metrics. Extensive experiments demonstrate that the optimized formula outperforms 33 existing CD measures by a large margin, offers reasonable local CD maps without the use of dense supervision, generalizes well to homogeneous color patch data, and empirically behaves as a proper metric in the mathematical sense. Our dataset and code are publicly available at https://github.com/hellooks/CDNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源