论文标题
灰尘生长在温度演化中的作用和降雪线迁移在磁性磁盘上的迁移
The Roles of Dust Growth in the Temperature Evolution and Snow Line Migration in Magnetically Accreting Protoplanetary Disks
论文作者
论文摘要
原星盘的温度结构对磁盘中岩石行星的位置(如我们自己的形式)提供了重要的约束。最近的非理想磁水动力学(MHD)模拟表明,与磁驱动的磁盘积聚相关的内部焦耳加热在加热磁盘中平面方面效率低下。基于MHD模拟的磁盘温度模型预测,在围绕太阳质量的年轻恒星周围的磁盘中,水雪线可以在磁盘形成后的1 MYR内移动到当前的地球轨道内。但是,内部焦耳加热的效率取决于磁盘的电离和不透明度结构,两者均受粉尘粒的控制。在这项研究中,我们通过梳理具有磁性磁盘的先前温度模型,以晶粒尺寸和垂直分布的参数化模型来研究这些效果。谷物的生长增强了气体电离部分,从而使焦耳加热更接近中平面。但是,超过10 $ \ rmμm$的增长会导致磁盘不透明度的降低,导致中平面温度较低。这两种效应的组合导致平面温度在晶粒尺寸不超过10-100 $ \ rmμm$ $时最大化。谷物的生长至毫米尺寸也可以将雪线的迁移延迟到1 AU轨道,最多可将雪线迁移到最多少数Myr。我们得出的结论是,考虑尘埃生长对于精确建模磁性磁盘中的雪线演化和陆地行星形成至关重要。
The temperature structure of protoplanetary disks provides an important constraint on where in the disks rocky planets like our own form. Recent nonideal magnetohydrodynamical (MHD) simulations have shown that the internal Joule heating associated with magnetically driven disk accretion is inefficient at heating the disk midplane. A disk temperature model based on the MHD simulations predicts that in a disk around a solar-mass young star, the water snow line can move inside the current Earth's orbit within 1 Myr after disk formation. However, the efficiency of the internal Joule heating depends on the disk's ionization and opacity structures, both of which are governed by dust grains. In this study, we investigate these effects by combing the previous temperature model for magnetically accreting disks with a parameterized model for the grain size and vertical distribution. Grain growth enhances the gas ionization fraction and thereby allows Joule heating to occur closer to the midplane. However, growth beyond 10 $\rm μm$ causes a decrease in the disk opacity, leading to a lower midplane temperature. The combination of these two effects results in the midplane temperature being maximized when the grain size is in the range 10-100 $\rm μm$. Grain growth to millimeter sizes can also delay the snow line's migration to the 1 au orbit by up to a few Myr. We conclude that accounting for dust growth is essential for accurately modeling the snow line evolution and terrestrial planet formation in magnetically accreting protoplanetary disks.