论文标题
通过聚类互相关优化光度红移分布的形状
Optimising the shape of photometric redshift distributions with clustering cross-correlations
论文作者
论文摘要
我们提出了一种将光度星系分配到一组红移箱中的优化方法。这是通过将模拟退火(一种灵感启发的固态物理学启发的优化算法)与无监督的机器学习方法(观察到星系颜色的自组织映射(SOM))相结合来实现的。从基于光度红移点估计值分为红移箱的星系样本开始,模拟退火算法反复重新分配了颜色接近的星系的SOM选择的子样本,这些子类似于颜色,可替代替代红移垃圾箱。我们优化了光度星系之间的聚类互相关信号和具有精心校准的红移的星系的参考样品。根据对聚类信号的影响,重新分配要么被接受或拒绝。通过动态增加SOM的分辨率,该算法最终会收敛到最小化每个断层扫描红移箱中不匹配星系的数量的解决方案,从而改善其相应的红移分布的紧凑性。该方法在合成LSST COSMODC2目录中得到了证明。我们发现在所有断层扫描中的红移分布中,灾难性异常值的比例显着下降,最著名的是在最高的红移箱中,离群分数从57%降低到16%。
We present an optimisation method for the assignment of photometric galaxies into a chosen set of redshift bins. This is achieved by combining simulated annealing, an optimisation algorithm inspired by solid-state physics, with an unsupervised machine learning method, a self-organising map (SOM) of the observed colours of galaxies. Starting with a sample of galaxies that is divided into redshift bins based on a photometric redshift point estimate, the simulated annealing algorithm repeatedly reassigns SOM-selected subsamples of galaxies, which are close in colour, to alternative redshift bins. We optimise the clustering cross-correlation signal between photometric galaxies and a reference sample of galaxies with well-calibrated redshifts. Depending on the effect on the clustering signal, the reassignment is either accepted or rejected. By dynamically increasing the resolution of the SOM, the algorithm eventually converges to a solution that minimises the number of mismatched galaxies in each tomographic redshift bin and thus improves the compactness of their corresponding redshift distribution. This method is demonstrated on the synthetic LSST cosmoDC2 catalogue. We find a significant decrease in the fraction of catastrophic outliers in the redshift distribution in all tomographic bins, most notably in the highest redshift bin with a decrease in the outlier fraction from 57 per cent to 16 per cent.