论文标题
隐式非线性扩散模型的最大似然训练
Maximum Likelihood Training of Implicit Nonlinear Diffusion Models
论文作者
论文摘要
尽管存在扩散模型的各种变化,但将线性扩散扩散到非线性扩散过程中,很少有作品研究。非线性效应几乎没有被理解,但是直觉上,有希望的扩散模式有效地将生成分布训练到数据分布。本文引入了基于分数扩散模型的数据自适应非线性扩散过程。提出的隐式非线性扩散模型(INDM)通过结合归一化流量和扩散过程来学习。具体而言,INDM通过通过流网络对\ textit {litex {littent Space}上的线性扩散来隐式构建在\ textIt {data Space}上的非线性扩散。由于非线性取决于流网络,因此该流网络是形成非线性扩散的关键。对于DDPM ++的非MLE曲线,这种灵活的非线性将INDM的学习曲线提高到几乎最大的可能性估计(MLE),事实证明,它是INDM的不灵活版本,其流量为身份映射。同样,INDM的离散化显示了采样鲁棒性。在实验中,INDM在Celeba上实现了1.75的最新FID。我们在https://github.com/byeonghu-na/indm上发布代码。
Whereas diverse variations of diffusion models exist, extending the linear diffusion into a nonlinear diffusion process is investigated by very few works. The nonlinearity effect has been hardly understood, but intuitively, there would be promising diffusion patterns to efficiently train the generative distribution towards the data distribution. This paper introduces a data-adaptive nonlinear diffusion process for score-based diffusion models. The proposed Implicit Nonlinear Diffusion Model (INDM) learns by combining a normalizing flow and a diffusion process. Specifically, INDM implicitly constructs a nonlinear diffusion on the \textit{data space} by leveraging a linear diffusion on the \textit{latent space} through a flow network. This flow network is key to forming a nonlinear diffusion, as the nonlinearity depends on the flow network. This flexible nonlinearity improves the learning curve of INDM to nearly Maximum Likelihood Estimation (MLE) against the non-MLE curve of DDPM++, which turns out to be an inflexible version of INDM with the flow fixed as an identity mapping. Also, the discretization of INDM shows the sampling robustness. In experiments, INDM achieves the state-of-the-art FID of 1.75 on CelebA. We release our code at https://github.com/byeonghu-na/INDM.