论文标题

长度的普遍性

Universality of minimal length

论文作者

Ali, Ahmed Farag, Elmashad, Ibrahim, Mureika, Jonas

论文摘要

我们提出了一个论点,重新解释了普遍的不确定性原理(GUP)及其相关的最小长度,以作为普朗克常数($ \ hbar $)的有效变化,从而补充了迪拉克(Dirac)的大数字假设不同的$ g $。我们认为,Hadron/Nuclei的电荷半径(即散射过程的最小长度)以及它们相应的质量支持存在$ \ HBAR $的有效变化。这表明在散射过程的测量中长度最小的通用性。不同的$ \ hbar $和$ g $解释了Bekenstein-Hawking Entropy-Area Law的von Neumann熵校正的必要性。最后,我们建议从各种元素得出的$ \ hbar $的有效值可能与它们通过核合成的创建时代有关。

We present an argument reinterpreting the generalized uncertainty principle (GUP) and its associated minimal length as an effective variation of Planck constant ($\hbar$), complementing Dirac's large number hypothesis of varying $G$. We argue that the charge radii (i.e. the minimal length of a scattering process) of hadrons/nuclei along with their corresponding masses support an existence of an effective variation of $\hbar$. This suggests a universality of a minimal length in measurement of scattering process. Varying $\hbar$ and $G$ explains the necessity of Von Neumann entropy correction in Bekenstein-Hawking entropy-area law. Lastly, we suggest that the effective value of $\hbar$ derived from various elements may be related to the epoch of their creation via nucleosynthesis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源