论文标题
使用模块化光学参数放大器对5G技术的5-DB挤压光进行43-GHz带宽实时振幅测量
43-GHz bandwidth real-time amplitude measurement of 5-dB squeezed light using modularized optical parametric amplifier with 5G technology
论文作者
论文摘要
连续可变的光学量子信息处理(CVOQIP),其中量子信息是在称为飞行量子的光线中编码的,是具有高时钟频率的实用量子计算机的候选者。正交相位幅度测量值的同源探测器已成为限制时钟频率的主要因素。在这里,我们使用模块化光学参数放大器(OPA)和宽带平衡光电二极管开发了实时振幅测量方法,该方法用于连贯的波长 - 波长划分多路复用电信的第五代移动通信系统(5G)。 OPA将量子级信号的一个正交相分量放大至容忍度耐受的宏观水平,并充当“魔杖”,该魔杖在OPA后从92.4 \%\%降低到仅0.4 \%。当该方法应用于中心波长为1545.32 nm的宽带挤压真空时,我们观察到5.2 $ \ pm $ 0.5 dB的从直流挤压到43 GHz,而没有任何损失校正。模块化OPA安排的CVOQIP和5G技术的婚姻将导致范式从使用固定量子台的常规方法转变(其中将信息编码在驻波系统中,再到使用飞行量子器进行超快速量子实用量子计算的方法。这意味着量子计算机研究将从开发机器的阶段转移到仅执行特定量子算法的机器的阶段,转变为开发机器的阶段,在运行任何算法时,可以超越经典计算机。
Continuous-variable optical quantum information processing (CVOQIP), where quantum information is encoded in a traveling wave of light called a flying qubit, is a candidate for a practical quantum computer with high clock frequencies. Homodyne detectors for quadrature-phase amplitude measurements have been the major factor limiting the clock frequency. Here, we developed a real-time amplitude measurement method using a modular optical parametric amplifier (OPA) and a broadband balanced photodiode that is commercially used for coherent wavelength-division multiplexing telecommunication of the fifth-generation mobile communication systems (5G). The OPA amplifies one quadrature-phase component of the quantum-level signal to a loss-tolerant macroscopic level, and acts as a "magic wand," which suppresses the loss after the OPA from 92.4\% to only 0.4\%. When the method was applied to a broadband squeezed vacuum with a center wavelength of 1545.32 nm, we observed 5.2 $\pm$ 0.5 dB of squeezing from DC to 43 GHz without any loss correction. The marriage of CVOQIP and 5G technology arranged by the modular OPA will lead to a paradigm shift from the conventional method of using stationary qubits, where the information is encoded in a standing wave system, to a method using flying qubits for ultra-fast practical quantum computation. This means that quantum computer research will move from the stage of developing machines that execute only specific quantum algorithms to a stage of developing machines that can outperform classical computers in running any algorithm.