论文标题
arkode:一步方法的灵活的IVP求解器基础架构
ARKODE: a flexible IVP solver infrastructure for one-step methods
论文作者
论文摘要
我们描述了普通微分方程(ODE)初始值问题(IVP)的一步时间集成方法的arkode库。除了提供标准的显式和对角线隐式runge(kutta方法)外,Arkode还支持旨在处理IVP添加剂分组的一步方法,包括隐式解释(IMEX)添加性runge-kutta-kutta方法和多段无限(MRI)方法。我们介绍了arkode在时间集成和非线性求解器库中的作用,这是大型一类方法的公用事业的核心Arkode基础架构,以及其使用“ Time Steper”模块的使用,可轻松将新型的Algorith纳入图书馆。数值结果显示了增加复杂性的示例问题,突出了通过此基础架构提供的算法灵活性,并包括较大的多物理应用程序,利用了来自Arkode和Sundials的多个算法特征。
We describe the ARKODE library of one-step time integration methods for ordinary differential equation (ODE) initial-value problems (IVPs). In addition to providing standard explicit and diagonally implicit Runge--Kutta methods, ARKODE also supports one-step methods designed to treat additive splittings of the IVP, including implicit-explicit (ImEx) additive Runge--Kutta methods and multirate infinitesimal (MRI) methods. We present the role of ARKODE within the SUNDIALS suite of time integration and nonlinear solver libraries, the core ARKODE infrastructure for utilities common to large classes of one-step methods, as well as its use of ``time stepper'' modules enabling easy incorporation of novel algorithms into the library. Numerical results show example problems of increasing complexity, highlighting the algorithmic flexibility afforded through this infrastructure, and include a larger multiphysics application leveraging multiple algorithmic features from ARKODE and SUNDIALS.