论文标题

Aang:自动化辅助学习

AANG: Automating Auxiliary Learning

论文作者

Dery, Lucio M., Michel, Paul, Khodak, Mikhail, Neubig, Graham, Talwalkar, Ameet

论文摘要

在机器学习中,辅助目标,旨在帮助数据饥饿或高度复杂的终端任务的补充学习信号是司空见惯的。尽管已经做了许多工作来制定有用的辅助目标,但它们的构造仍然是一种以缓慢和乏味的手工设计进行的艺术。这些目标如何以及何时改善终执行任务的直觉也具有有限的理论支持。在这项工作中,我们提出了一种自动产生辅助目标套件的方法。我们通过在新颖的统一分类法内解构现有目标,确定它们之间的联系并根据未发现结构产生新的联系来实现这一目标。接下来,我们从理论上正式化了有关辅助学习如何改善终端任务的广泛直觉。这使我们采用了一种有原则,有效的算法,用于搜索生成的目标的空间,以找到对指定的端任务最有用的算法。以自然语言处理(NLP)为我们的研究领域,我们证明了我们自动化的辅助学习管道在对5个NLP任务的预训练模型上进行了持续的培训实验,从而对竞争性基准进行了强烈的改进。

Auxiliary objectives, supplementary learning signals that are introduced to help aid learning on data-starved or highly complex end-tasks, are commonplace in machine learning. Whilst much work has been done to formulate useful auxiliary objectives, their construction is still an art which proceeds by slow and tedious hand-design. Intuition for how and when these objectives improve end-task performance has also had limited theoretical backing. In this work, we present an approach for automatically generating a suite of auxiliary objectives. We achieve this by deconstructing existing objectives within a novel unified taxonomy, identifying connections between them, and generating new ones based on the uncovered structure. Next, we theoretically formalize widely-held intuitions about how auxiliary learning improves generalization on the end-task. This leads us to a principled and efficient algorithm for searching the space of generated objectives to find those most useful to a specified end-task. With natural language processing (NLP) as our domain of study, we demonstrate that our automated auxiliary learning pipeline leads to strong improvements over competitive baselines across continued training experiments on a pre-trained model on 5 NLP tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源