论文标题
数据驱动的雷诺平均模型模型不确定性的量化风电场的模拟
Data-driven quantification of model-form uncertainty in Reynolds-averaged simulations of wind farms
论文作者
论文摘要
使用雷诺平均的Navier-Stokes(RANS)使用计算流体动力学仍然是研究风电场中唤醒流量和功率损失的最具成本效益的方法。与湍流封闭相关的基本假设是模型预测中错误和不确定性的最大来源之一。这项工作旨在通过通过数据驱动的机器学习技术扰动雷诺强调张量,在中性分层条件下对风电场的模拟模拟模拟模拟模拟量。为此,应用了两步功能选择方法来确定模型的关键特征。然后,对极端梯度增强算法进行了验证并使用,以预测建模的雷诺(Reynolds)对barycentric MAP上湍流的限制状态的扰动量和方向。该过程导致雷诺应激各向异性的更准确表示。数据驱动的模型经过从特定风电场的大涡模拟获得的高保真数据进行培训,并在其他两个(看不见的)风电场上进行了测试,并具有不同的布局,以分析其在具有不同涡轮间距和部分尾流的情况下的性能。结果表明,与无数据的方法相比,将均匀且恒定的扰动量应用于整个计算域,所提出的框架可以最佳地估计不确定性数量的利益量,包括唤醒速度,湍流强度,湍流强度和风力场中的电力损失。
Computational fluid dynamics using the Reynolds-averaged Navier-Stokes (RANS) remains the most cost-effective approach to study wake flows and power losses in wind farms. The underlying assumptions associated with turbulence closures are one of the biggest sources of errors and uncertainties in the model predictions. This work aims to quantify model-form uncertainties in RANS simulations of wind farms at high Reynolds numbers under neutrally stratified conditions by perturbing the Reynolds stress tensor through a data-driven machine-learning technique. To this end, a two-step feature-selection method is applied to determine key features of the model. Then, the extreme gradient boosting algorithm is validated and employed to predict the perturbation amount and direction of the modeled Reynolds stress toward the limiting states of turbulence on the barycentric map. This procedure leads to a more accurate representation of the Reynolds stress anisotropy. The data-driven model is trained on high-fidelity data obtained from large-eddy simulation of a specific wind farm, and it is tested on two other (unseen) wind farms with distinct layouts to analyze its performance in cases with different turbine spacing and partial wake. The results indicate that, unlike the data-free approach in which a uniform and constant perturbation amount is applied to the entire computational domain, the proposed framework yields an optimal estimation of the uncertainty bounds for the RANS-predicted quantities of interest, including the wake velocity, turbulence intensity, and power losses in wind farms.