论文标题
高复杂机器人群控制的低复杂性脑计算机界面
A Low-complexity Brain-computer Interface for High-complexity Robot Swarm Control
论文作者
论文摘要
大脑计算机界面(BCI)是一个系统,它允许人类操作员仅使用心理命令来控制与周围世界相互作用的最终效应器。这样的系统由一个测量设备组成,用于记录人类用户的大脑活动,然后将其处理成驱动系统最终效应器的命令。 BCIS涉及侵入性测量值,可以进行高复杂性控制,但通常是不可行的,或者是无创测量的,可提供质量较低但更实用的使用。通常,在保留无创测量的实用性的同时,尚未开发出有效,稳定和可靠地进行高复杂性控制的BCI系统。在这里,我们利用反馈信息理论的最新结果来填补这一空白,通过将BCIS建模为通信系统,并部署可实现的相互作用算法,用于对高复杂机器人群的非侵入性控制。我们构建了一个可扩展的机器人行为词典,可以通过BCI用户简单有效地搜索,正如我们通过大规模用户研究所证明的那样,测试了我们交互算法的可行性,这是对(虚拟和真实)机器人SWARM的完整BCI系统的用户测试,并验证了我们的模型违反理论模型。我们的结果为如何通过低复杂性和嘈杂输入的BCI系统有效地控制了大量的高复杂效应子(甚至超出机器人技术)的概念证明。
A brain-computer interface (BCI) is a system that allows a human operator to use only mental commands in controlling end effectors that interact with the world around them. Such a system consists of a measurement device to record the human user's brain activity, which is then processed into commands that drive a system end effector. BCIs involve either invasive measurements which allow for high-complexity control but are generally infeasible, or noninvasive measurements which offer lower quality signals but are more practical to use. In general, BCI systems have not been developed that efficiently, robustly, and scalably perform high-complexity control while retaining the practicality of noninvasive measurements. Here we leverage recent results from feedback information theory to fill this gap by modeling BCIs as a communications system and deploying a human-implementable interaction algorithm for noninvasive control of a high-complexity robot swarm. We construct a scalable dictionary of robotic behaviors that can be searched simply and efficiently by a BCI user, as we demonstrate through a large-scale user study testing the feasibility of our interaction algorithm, a user test of the full BCI system on (virtual and real) robot swarms, and simulations that verify our results against theoretical models. Our results provide a proof of concept for how a large class of high-complexity effectors (even beyond robotics) can be effectively controlled by a BCI system with low-complexity and noisy inputs.